Limiting the Shrinkage for the Exceptional by Objective Robust Bayesian Analysis
نویسندگان
چکیده
Modern Statistics is made of the sensible combination of direct evidence (the data directly relevant or the “individual data”) and indirect evidence (the data and knowledge indirectly relevant or the “group data”). The admissible procedures are a combination of the two sources of information, and the advance of technology is making indirect evidence more substantial and ubiquitous. It has been pointed out however, that in “borrowing strength” an important problem of Statistics is to treat in a fundamentally different way exceptional cases, cases that do not adapt to the central “aurea mediocritas”. This is what has been recently coined as “the Clemente problem” (Efron, 2009). In this article we put forward that the problem is caused by the simultaneous use of square loss function and conjugate (light tailed) priors which is the usual procedure. We propose in their place to use robust penalties, in the form of losses that penalize more severely huge errors, or (equivalently) priors of heavy tails which make more probable the exceptional. Using heavy tailed prior we can reproduce in a Bayesian way, Efron and Morris’“limited translated estimators” (with Double Exponential Priors) and “discarding priors estimators” (with Cauchy-like priors) which discard the prior in the presence of conflict. Both Empirical Bayes and Full Bayes approaches are able to alleviate the Clemente Problem and furthermore beat the James-Stein estimator in terms of smaller square errors, for sensible Robust Bayes priors. We model in parallel Empirical Bayes and Fully Bayesian hierarchical models, illustrating that the differences among sensible versions of both are minute, as compared with the effect due to the robust assumptions. We propose a heavy tailed Beta2 distribution for variances that arises naturally as an alternative to the usual Inverted-Gamma distribution. The combination of a Cauchy Prior for location and Beta2 for scale, yields a novel closed form prior for location that we call Beta2-Cauchy, extremely suitable for Objective Robust Bayesian Analysis (ORBA).
منابع مشابه
Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملClassic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملE-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function
Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...
متن کاملEvaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data
Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010